People that have been trying in vain to start a family for a long time experience enormous psychological pressure, emotional suffering, and financial burden. It is, therefore, crucial for their quality of life to identify the cause as soon as possible. According to estimates, up to 10 percent of involuntary childlessness stems from genetic causes, such as hereditary hormonal disturbances. CeGaT’s Diagnostic Panel for Fertility includes 203 genes in which variants can lead to genetic infertility or recurrent pregnancy loss.
The results of molecular genetic testing can be used to determine specific treatment options for the couple wishing to have a child. These include individually tailored hormone therapies or artificial insemination procedures. Hopeless approaches can be ruled out from the outset. Furthermore, it is possible to identify additional specific risks for the offspring related to the fertility disorder through molecular genetic testing.
The Diagnostic Panel for Fertility is based on exome sequencing with CeGaT ExomeXtra®. CeGaT ExomeXtra® covers all protein-coding regions as well as all known pathogenic intronic and intergenic variants. It thus provides the best basis for genetic diagnostics.
Are you insured in Germany? Our colleagues at the Zentrum für Humangenetik Tübingen will gladly support you!
What We Offer with the Panel for Fertility
Our Promise to You
Your Benefits
It is possible to request single or multiple predefined gene sets. In addition to the complete analysis of the genes of the requested gene set, we extend the analysis to all genes of the Diagnostic Panel for Fertility upon request. We report pathogenic and probably pathogenic variants (ACMG classes 4 and 5), which could be related to the indication of the person seeking advice.
The Diagnostic Panel for Fertility is based on the CeGaT ExomeXtra® enrichment. This allows, without additional sequencing, phenotypically eligible gene sets of other CeGaT panels or single genes to be additionally ordered. If you would like to assemble an individual panel, please feel free to contact us. We will be happy to support you.
In addition to the primary diagnostic assignment, the assessment of ACMG genes and pharmacogenetic profiling may also be ordered.
Method
The enrichment of the coding regions and the adjacent intronic regions is performed using an in-solution hybridization technology. The selection of the targeted regions and the design of the enrichment baits is performed in-house. High throughput sequencing is performed on Illumina platforms. Bioinformatic processing of the data is achieved using an in-house computer cluster.
Following data processing, our team of scientists and specialists in human genetics analyze the data and issue a medical report.
Sample Report
General Information
Material
- 1-2 ml EDTA blood (recommended sample type) or
- 1-2 µg genomic DNA
- Order Form with declaration of consent
Here you can find more information on how to ship your sample safely.
Turnaround Time
- Turnaround Time: < 4 Weeks
Costs
The prices for our human genetic diagnostics depend on the size of the selected Diagnostic Panel and the selected gene sets. All prices include sequencing, bioinformatic analysis, and issuing of a medical report by our team of experts in human genetic diagnostics.
Gene Sets – Female Fertility
Premature Ovarian Failure (FER02, 17 Genes)
FMR1 repeat analysis optional
BMP15, CLPP, FIGLA, FOXL2, FSHR, GDF9, HFM1, HSF2BP, LARS2, MCM8, MCM9, MSH4, NOBOX, NR5A1, STAG3, SYCE1, TWNK
Ovarian Dysgenesis and Primary Amenorrhea (FER03, 12 Genes)
BMP15, CLPP, ESR1, FSHR, GGPS1, HARS2, HSD17B4, MCM8, MCM9, PSMC3IP, SOHLH1, SPIDR
Recurrent Pregnancy Loss, Oocyte Maturation Defect and Embryonic Arrest (FER04, 17 Genes)
BTG4, FBXO43, KHDC3L, MEI1, MOS, NLRP5, NLRP7, PADI6, PANX1, PATL2, TLE6, TRIP13, TUBB8, WEE2, ZP1, ZP2, ZP3
For genes associated with bleeding disorders with thrombophilia and thrombocythemia, please refer to our order form “Bleeding disorders with thrombophilia and thrombocythemia.”
Female Infertility (FER15, 132 Genes)
AIP, AIRE, AMH, AMHR2, ANOS1, BMP15, BMP4, BTG4, BTK, CASR, CDC73, CDH23, CHD7, CLPP, CPE, DIO1, DUOX2, DUOXA2, DUSP6, ESR1, FBXO43, FEZF1, FGF17, FGF8, FGFR1, FIGLA, FLRT3, FMR1-Repeat, FOXE1, FOXL2, FSHB, FSHR, GATA3, GCM2, GDF9, GGPS1, GH1, GHR, GHRHR, GLIS3, GNA11, GNAS, GNRH1, GNRHR, GPR101, HAMP, HARS2, HESX1, HFE, HFM1, HS6ST1, HSD17B4, HSD3B2, HSF2BP, IGSF1, IGSF10, IL17RD, IRS4, IYD, KHDC3L, KISS1R, LARS2, LAS1L, LHB, LHCGR, LHX3, LHX4, MCM8, MCM9, MEI1, MOS, MSH4, NDNF, NKX2-1, NKX2-5, NLRP5, NLRP7, NOBOX, NR0B1, NR5A1, NSMF, OTX2, PADI6, PANX1, PATL2, PAX8, POU1F1, PROK2, PROKR2, PROP1, PRORP, PSMC3IP, PTH, RNPC3, SECISBP2, SEMA3A, SLC16A2, SLC26A4, SLC40A1, SLC5A5, SOHLH1, SOX10, SOX2, SOX3, SPIDR, SPRY4, STAG3, SYCE1, TAC3, TACR3, TBCE, TBL1X, TCF12, TFR2, TG, THRA, THRB, TLE6, TPO, TRHR, TRIP13, TSHB, TSHR, TTF1, TUBB8, TWNK, UBR1, USP8, WDR11, WEE2, ZP1, ZP2, ZP3
Gene Sets – Male Fertility
Azoospermia (FER06, 28 Genes)
AZF deletion analysis optional
ADGRG2, AR, C14orf39, CFTR, FANCA, FANCM, FBXO43, GCNA, GLA, INSL3, M1AP, MSH4, MSH5, NANOS1, PDHA2, PNLDC1, SHOC1, SOHLH1, STAG3, SYCP2, TERB1, TEX11, TEX14, TEX15, USP9Y, XRCC2, ZMYND15, ZSWIM7
Oligozoospermia (FER07, 16 Genes)
AR, CATIP, CCDC39, CFTR, CYP19A1, GLA, INSL3, KLHL10, M1AP, MSH4, NR5A1, PDHA2, PMFBP1, SYCP2, TEX15, ZMYND15
Asthenozoospermia (FER14, 31 Genes)
ARMC2, CCDC39, CDC14A, CFAP43, CFAP44, CFAP45, CFAP52, CFAP58, CFAP69, CFAP91, CFAP251, DNAH1, DNAH8, DNAH10, DNAH17, DNHD1, DZIP1, FSIP2, HYDIN, IFT74, KLHL10, M1AP, MNS1, PMFBP1, QRICH2, SLC26A8, SPEF2, TSGA10, TTC21A, TTC29, WDR19
Teratozoospermia (FER09, 34 Genes)
ACTL9, ARMC2, AURKC, CEP112, CFAP43, CFAP44, CFAP47, CFAP58, CFAP65, CFAP91, CFAP251, DNAH1, DNAH2, DNAH8, DNAH10, DNAH17, DNHD1, DPY19L2, DZIP1, FSIP2, GGN, IFT74, KLHL10, MNS1, PLCZ1, PMFBP1, PPP2R3C, QRICH2, RSPH3, SEPTIN12, SPEF2, SUN5, TTC21A, TTC29
Oligoasthenoteratozoospermia (OAT) (FER08, 12 Genes)
CATIP, CEP78, CFAP69, FBXO43, FSIP2, GCNA, NANOS1, PNLDC1, SEPTIN12, SUN5, TTC21A, USP26
Male Infertility (FER16, 167 Genes)
ACTL9, ADGRG2, AIP, AIRE, AMH, AMHR2, ANOS1, AR, ARMC2, AURKC, AZF-Deletionsanalyse, BMP4, BTK, C14orf39, CASR, CATIP, CCDC39, CDC14A, CDC73, CDH23, CEP112, CEP78, CFAP251, CFAP43, CFAP44, CFAP45, CFAP47, CFAP52, CFAP58, CFAP65, CFAP69, CFAP91, CFTR, CHD7, CPE, CYP19A1, DIO1, DNAH1, DNAH10, DNAH17, DNAH2, DNAH8, DNHD1, DPY19L2, DUOX2, DUOXA2, DUSP6, DZIP1, FANCA, FANCM, FBXO43, FEZF1, FGF17, FGF8, FGFR1, FLRT3, FOXE1, FSHB, FSIP2, GATA3, GCM2, GCNA, GGN, GH1, GHR, GHRHR, GLA, GLIS3, GNA11, GNAS, GNRH1, GNRHR, GPR101, HAMP, HESX1, HFE, HS6ST1, HSD3B2, HYDIN, IFT74, IGSF1, IGSF10, IL17RD, INSL3, IRS4, IYD, KISS1R, KLHL10, LAS1L, LHB, LHCGR, LHX3, LHX4, M1AP, MNS1, MSH4, MSH5, NANOS1, NDNF, NKX2-1, NKX2-5, NR0B1, NR5A1, NSMF, OTX2, PAX8, PDHA2, PLCZ1, PMFBP1, PNLDC1, POU1F1, PPP2R3C, PROK2, PROKR2, PROP1, PRORP, PTH, QRICH2, RNPC3, RSPH3, SECISBP2, SEMA3A, SEPTIN12, SHOC1, SLC16A2, SLC26A4, SLC26A8, SLC40A1, SLC5A5, SOHLH1, SOX10, SOX2, SOX3, SPEF2, SPRY4, STAG3, SUN5, SYCP2, TAC3, TACR3, TBCE, TBL1X, TCF12, TERB1, TEX11, TEX14, TEX15, TFR2, TG, THRA, THRB, TPO, TRHR, TSGA10, TSHB, TSHR, TTC21A, TTC29, TTF1, UBR1, USP26, USP8, USP9Y, WDR11, WDR19, XRCC2, ZMYND15, ZSWIM7
Gene Sets – Sex-Independent Fertility
Congenital Hypothyroidism and Thyroid Dyshormonogenesia (FER05, 34 Genes)
AIRE, CASR, CDC73, DIO1, DUOX2, DUOXA2, FOXE1, GATA3, GCM2, GLIS3, GNA11, GNAS, HESX1, IGSF1, IRS4, IYD, NKX2-1, NKX2-5, PAX8, PTH, SECISBP2, SLC26A4, SLC5A5, TBCE, TBL1X, TG, THRA, THRB, TPO, TRHR, TSHB, TSHR, TTF1, UBR1
Hypogonadotropic Hypogonadism with or without Anosmia, incl. Kallmann Syndrome (FER10, 42 Genes)
AMH, AMHR2, ANOS1, CHD7, CPE, DUSP6, FEZF1, FGF17, FGF8, FGFR1, FLRT3, FSHB, GNRH1, GNRHR, HAMP, HESX1, HFE, HS6ST1, HSD3B2, IGSF10, IL17RD, KISS1R, LAS1L, LHB, LHCGR, NDNF, NR0B1, NSMF, PROK2, PROKR2, PRORP, SEMA3A, SLC40A1, SOX10, SOX2, SOX3, SPRY4, TAC3, TACR3, TCF12, TFR2, WDR11
Pituitary Hormone Deficiency (FER11, 19 Genes)
AIP, BMP4, BTK, CDH23, FGF8, GH1, GHR, GHRHR, GNAS, GPR101, HESX1, LHX3, LHX4, OTX2, POU1F1, PROP1, RNPC3, SLC16A2, USP8
Gene Directory – Panel for Fertility
ACTL9, ADGRG2, AIP, AIRE, AMH, AMHR2, ANOS1, AR, ARMC2, AURKC, BMP15, BMP4, BTG4, BTK, C14orf39, CASR, CATIP, CCDC39, CDC14A, CDC73, CDH23, CEP112, CEP78, CFAP251, CFAP43, CFAP44, CFAP45, CFAP47, CFAP52, CFAP58, CFAP65, CFAP69, CFAP91, CFTR, CHD7, CLPP, CPE, CYP19A1, DIO1, DNAH1, DNAH10, DNAH17, DNAH2, DNAH8, DNHD1, DPY19L2, DUOX2, DUOXA2, DUSP6, DZIP1, ESR1, FANCA, FANCM, FBXO43, FEZF1, FGF17, FGF8, FGFR1, FIGLA, FLRT3, FOXE1, FOXL2, FSHB, FSHR, FSIP2, GATA3, GCM2, GCNA, GDF9, GGN, GGPS1, GH1, GHR, GHRHR, GLA, GLIS3, GNA11, GNAS, GNRH1, GNRHR, GPR101, HAMP, HARS2, HESX1, HFE, HFM1, HS6ST1, HSD17B4, HSD3B2, HSF2BP, HYDIN, IFT74, IGSF1, IGSF10, IL17RD, INSL3, IRS4, IYD, KHDC3L, KISS1R, KLHL10, LARS2, LAS1L, LHB, LHCGR, LHX3, LHX4, M1AP, MCM8, MCM9, MEI1, MNS1, MOS, MSH4, MSH5, NANOS1, NDNF, NKX2-1, NKX2-5, NLRP5, NLRP7, NOBOX, NR0B1, NR5A1, NSMF, OTX2, PADI6, PANX1, PATL2, PAX8, PDHA2, PLCZ1, PMFBP1, PNLDC1, POU1F1, PPP2R3C, PROK2, PROKR2, PROP1, PRORP, PSMC3IP, PTH, QRICH2, RNPC3, RSPH3, SECISBP2, SEMA3A, SEPTIN12, SHOC1, SLC16A2, SLC26A4, SLC26A8, SLC40A1, SLC5A5, SOHLH1, SOX10, SOX2, SOX3, SPEF2, SPIDR, SPRY4, STAG3, SUN5, SYCE1, SYCP2, TAC3, TACR3, TBCE, TBL1X, TCF12, TERB1, TEX11, TEX14, TEX15, TFR2, TG, THRA, THRB, TLE6, TPO, TRHR, TRIP13, TSGA10, TSHB, TSHR, TTC21A, TTC29, TTF1, TUBB8, TWNK, UBR1, USP26, USP8, USP9Y, WDR11, WDR19, WEE2, XRCC2, ZMYND15, ZP1, ZP2, ZP3, ZSWIM7
Additional Services
ACMG Genes
Genetic variation may sometimes be identified, which does not fit within the scope of the requested genetic analysis (so-called secondary findings). The reporting of these variants is limited to pathogenic alterations (ACMG classes 4 and 5) within selected genes, for which a treatment or course of action exists for you or your family (according to the current guidelines of the American College of Medical Genetics and Genomics; details on genes and associated diseases can be found here.
Pharmacogenetics
Pharmacogenetic analysis detects genetic changes that affect the effectiveness of drugs. Genetic variants that affect proteins responsible for the metabolism of substances can significantly change their tolerance and efficacy. These drugs include, among others, antidepressants, pain relievers, neuroleptics, chemotherapeutics, AIDS drugs, thrombosis drugs, anesthetics, beta-blockers, or statins.
The reduced activity of a specific enzyme can lead to an increased drug level in the standard dosage, which is often associated with undesirable side effects. With drugs that are only activated by metabolism, the therapeutic effect can be completely absent. Likewise, due to the resulting increased rate of degradation of the medicinal substance, an increased enzyme activity leads to inadequate effectiveness of the therapy.
The pharmacogenetics option analyzes known variants in 22 genes involved in the metabolism of drugs. If specific gene variants occur, the treating doctor can adapt the therapy individually. The pharmacogenetic analysis can minimize serious side effects and helps to avoid failure of the treatment.
Downloads
Contact Us
Do you have a question, or are you interested in our service?
Diagnostic Support
We will assist you in selecting the diagnostic strategy – for each patient.
