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Single-cell RNA Sequencing (scRNAseq) is an emerging technology that allows the analysis of the whole coding transcriptome 

of each individual cell in complex samples. With downstream cluster analysis and differential analysis of the transcriptomic 

profiles, the marker genes of the different cell clusters can be determined, and differences in gene expression patterns 
can be identified. Thus, different cell types and cellular subgroups, as well as their molecular characteristics, can be 
identified, quantified, and compared against each other. This makes scRNAseq particularly suitable for heterogeneous 
and cellularly diverse samples and allows in-depth analysis of the development and progression of complex diseases. 

In this Tech Note, we investigate the accuracy and variability of 

scRNAseq using the 10x Genomics single-cell gene expression 

workflow and how this technique can be used to identify cell 
composition shifts in real-world samples. During 10x-based 

scRNAseq, cell suspensions are processed together with 

specific gel beads that tag all mRNA molecules of every single 
cell with cell-specific barcode sequences and unique molecular 
identifiers. Hence, each mRNA molecule can be traced back to 
its original cell, which leads to accurate high-resolution data and 

allows the analysis of the whole transcriptome of individual cells. 

This enables the discrimination between different cell types in 

complex samples and detailed gene expression analysis at the 

single-cell level. 

Methods
For the analysis of assay accuracy, we used four spike-in samples 

generated by mixing PBMCs (Peripheral Blood Mononuclear 

Cells) collected from a healthy donor with cells of the tumor 

cell line HEK293T (10%, 5%, 1%, and 0.5% HEK cells) as well as 
one PBMC control sample. To test the variability of scRNAseq, 

we used six PBMC aliquots collected from a healthy donor 

that were processed in parallel in a single batch as well as in 

different batches. Finally, we applied the 10x technology to 

samples from a cancer vaccination patient. Here, we analyzed 
the patients‘ PBMCs before and after a peptide-based cancer 

vaccination. All samples were processed using the Chromium 

Next GEM Single Cell 3‘ Kit v3.1 according to our optimized 10x cell 
preparation workflow. cDNA and final libraries were prepared 
according to our adjusted 10x protocol to maximize yield and 
were sequenced on the Illumina NovaSeq 6000 sequencing 

system using paired-end sequencing aiming at a minimum output 

of 20,000 reads per cell. Data were analyzed using CellRanger  
(10x Genomics) and the R package „Seurat“ (Stuart et al. 2019). 
Cell clusters were annotated using the expression of marker 

genes. For variability determination and analysis of cell type 

shifts in samples from a cancer vaccination patient, non-PBMCs 

(erythrocytes, platelets, neutrophils) and damaged cells were 

excluded, and only PBMCs were considered.

Results
To demonstrate assay accuracy, we spiked HEK293T cells in 
defined proportions to a PBMC sample collected from a healthy 
donor to simulate the presence of a rare cell population. In 

total, 18,168 cells were analyzed in five samples. As shown in  
Figure 1, HEK293T cells could be clearly distinguished from 
PBMCs in all HEK cell-containing samples with only 0.02% of 
PBMCs that were misassigned to the HEK cluster in the PBMC 
control. On average, the detected HEK cell proportions in 
the mixtures showed a relative deviation of 28.7% from the 
expected values (Table 1). Overall, these results indicate that the 

presence of rare cellular subpopulations in a complex biological 

sample can be detected down to a relative abundance of at 

least 0.5%.

Table 1: PBMC and HEK293T proportions detected in spike-in and control samples. 

sample type mixture
proportion of PBMCs

 [%]
proportion of HEKs 

[%]

PBMC - 99.98 0.02

PBMC:HEK 90:10 88.58 11.42

PBMC:HEK 95:5 92.03 7.97

PBMC:HEK 99:1 98.87 1.13

PBMC:HEK 99.5:0.5 99.36 0.64
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Figure 2: Technical variability in cellular proportions determined in a PBMC sample. Six aliquots of a PBMC sample collected from a healthy donor were processed using 
our 10x pipeline. Cellular populations (legend) were annotated using cluster analysis and cell type-specific marker genes. 

Figure 1: Proportions of PBMC and HEK293T cells detected in spike-in and control samples. A PBMC sample from a healthy donor was spiked with different proporti-
ons (10%, 5%, 1%, 0.5%) of the cancer cell line HEK293T. A-E show UMAP plots of the individual samples. F shows a UMAP plot combining all data from all samples.  
Blue = PBMC cells; Red = HEK293T cells.
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To test for assay variability, a PBMC sample from a healthy 

donor was analyzed in six replicates yielding 34,919 cells in total. 
Cell clusters were annotated using marker gene expression in 

two different resolutions (low and high cell type resolution), and 

the relative cell cluster proportions, as well as the coefficient 
of variation (CV), were calculated (Figure 2). The average CV 
was 12.8% and 16.8% for low and high cell type resolution, 
respectively. Regarding the CV values of the individual cell 

clusters, 9 of 9 (low resolution) and 19 of 20 (high resolution) 
clusters showed CV values below 30% (3.5% - 24.2%; 6.0% - 
29.6%) (Table 2). The cluster showing a CV value higher than 
30% did not feature a clear marker gene expression profile. 
Therefore, it is not surprising that cluster assignment for these 

cells was inconsistent. In addition, as this cluster consists of 

very few cells and shows a low relative abundance of 0.5%, 
little changes like the misassignment of a few cells can have 

a strong impact on CV values. In contrast, other rare cell types 

with a low relative abundance of 0.4% - 0.1% (e. g. plasmablast 
cells, plasmacytoid dendritic cells, and hematopoietic stem 

and progenitor cells) that featured a clearer marker gene 

expression profile could be detected with CV values below 30%, 
confirming and even exceeding the results found in the assay 
accuracy evaluation. Regarding immune cell type distribution, 

the proportions of the detected immune cell types were 

comparable to literature data (Behr-Perst et al. 1999; Böttcher 
et al. 2019).

cell type 
(low resolution) 

average proportion  [%] CV [%]
cell type 
 (high resolution) 

average proportion [%] CV [%]

CD4 T Cells 33.6 9.4 CD4 TCM Cells 17.9 8.6

CD4 naive Cells 9.3 18.7

CD4 CTL Cells 4.0 20.1

T regs 2.4 13.7

CD8 T Cells 19.8 5.1 CD8 TEM Cells 9.1 16.5

CD8 naive Cells 6.5 15.7

CD8 TCM Cells 4.2 8.2

Other T Cells 7.5 16.8 MAITs 7.0 15.9

Proliferating T Cells 0.5 43.1

NK Cells 15.2 14.7 NK Cells 15.2 14.7

CD14 Monocytes 11.2 18.3 CD14 Monocytes 11.2 18.3

CD16 Monocytes 4.5 13.2 CD16 Monocytes 4.5 13.2

B Cells 6.1 3.5 mature B Cells 2.5 11.4

naive B Cells 2.3 6.0

memory B Cells 1.3 11.6

DCs 1.6 10.3 DCs 1.3 15.4

pDCs 0.3 18.3

Other Cells 0.5 24.2 Plasmablasts 0.4 29.6

HSPCs 0.2 19.9

Table 2: Average cell type proportions [%] and cell type-specific variability (CV) detected in six PBMC aliquots generated from the same sample of a healthy donor in low 
(left) and high (right) cell type resolution.

Non-PBMCs (erythrocytes, platelets) and damaged cells were excluded before average cell type proportions and CVs were calculated.  
CV = coefficient of variation



Figure 3: Cellular composition of PBMC samples collected from a cancer vaccination patient. Three PBMC samples were collected from an ovarian cancer patient under-
going individualized anti-cancer peptide vaccination. A shows a UMAP plot combining all data from all samples. B shows the expression of representative marker genes 
used for cell type annotation. Increasing expression values are displayed from light to dark blue.
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Figure 4: Shifts in immune cell type proportions determined over time in samples collected from a cancer vaccination patient. PBMC samples of a cancer vaccination 
patient before (V1) and after vaccination (V7, V12) were analyzed, and cell populations were identified using cluster analysis and cell type-specific marker genes. Non-
PBMCs (erythrocytes, platelets, neutrophils) were excluded before cell type proportions were calculated. A shows a stacked bar plot of the detected immune cell types.  
B shows cell types that were increased after vaccination. C shows cell types that were decreased after vaccination. To distinguish biological changes from technical 
noise, we used a threshold of 2x the cell-specific CV determined using PBMC samples collected from a healthy donor (Table 2). The changes determined for the cell types 
shown in B and C exceeded this threshold and are thus considered biologically relevant. 

Furthermore, we applied our optimized 10x 3’ gene expression 
workflow to PBMC samples from an ovarian cancer patient that 
underwent individualized anti-cancer peptide vaccination. Here, 
we collected PBMC samples before (V1) and after the 7th (V7) 
and 12th (V12) vaccination and analyzed 17,237 cells in total. The 
computed cell clusters were annotated using the expression 

of distinct marker genes as shown in Figure 3B, resulting in an 
annotated UMAP Plot (Figure 3A). Subsequently, the annotated 
cell clusters were used to calculate relative cell type abundances 

and to determine shifts in cell type proportions over the course 

of vaccination treatments. We found that cell proportions of 

several PBMC subpopulations varied over time (Figure 4A). To 

distinguish biological changes from technical noise, we applied 

a threshold of 2-times the cell type-specific CV determined in 
the variability experiment that had to be exceeded in both post-

vaccination samples as compared to V1. The identified relevant 

changes are displayed as fold change compared to the first 
time point in Figures 4B and 4C. Here, we detected increased 
proportions of CD4-positive effector and central memory  

T cells in post-vaccination samples, which is in concordance 

with simultaneously performed immune monitoring detecting 

vaccine-induced T cell responses. Interestingly, the patient 

developed very strong CD4 immune responses against 3 of 10 
vaccinated peptides that were not present before treatment. 

In addition, naive CD4- and CD8-positive as well as other T cell 

clusters were increased, indicating that the administered cancer 

vaccination mainly promoted T cell expansion. In contrast, 

CD14 and CD16 monocytes were decreased over time, probably 

caused by the applied adjuvant (Sargramostin). Furthermore,  

B cell proportions decreased over time. All detected biologically 

relevant changes were in accordance with medical findings and 
recent publications (Cao et al. 2021). 



Conclusion
Our analytical evaluation revealed that scRNAseq using the 10x technology is a robust tool to detect rare cell populations in complex 

samples down to a relative abundance of 0.5%. Our optimized scRNAseq workflow showed a relatively low technical variability with 
average CV values of 12.8% for low and 16.8% for high cell type resolution. Furthermore, it was very well suited to determine cell type 
proportion shifts in samples collected over time. In conclusion, these results emphasize the great potential of scRNAseq for the 
discovery of new biomarkers or in-depth analysis of therapeutic mechanisms by analyzing differential gene expression or changes 
in cellular diversity on a cell-by-cell basis.
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About Us
CeGaT was founded in 2009 in Tübingen, Germany. Our 
scientists are specialized in next-generation sequencing 
(NGS) for genetic diagnostics, and we also provide a variety 

of sequencing services for research purposes and pharma 

solutions. Our sequencing  service portfolio is complemented 

by analyses suited for microbiome, immunology, and 

translational oncology studies.

Our dedicated project management team of scientists and 

bioinformaticians works closely with you to develop the best 

strategy to realize your project. Depending on its scope, we 
select the most suitable library preparation and sequencing 

conditions on our Illumina platforms. 

We would be pleased to provide you with our award-winning 
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